Generalized tilting modules with finite injective dimension
نویسندگان
چکیده
منابع مشابه
Selforthogonal modules with finite injective dimension II
Let Λ be a left and right Artin ring and ΛωΛ a faithfully balanced selforthogonal bimodule. We give a sufficient condition that the injective dimension of ωΛ is finite implies that of Λω is also finite. 2003 Elsevier Science (USA). All rights reserved.
متن کاملUpper bounds for noetherian dimension of all injective modules with Krull dimension
In this paper we give an upper bound for Noetherian dimension of all injective modules with Krull dimension on arbitrary rings. In particular, we also give an upper bound for Noetherian dimension of all Artinian modules on Noetherian duo rings.
متن کاملTorsionfree Dimension of Modules and Self-injective Dimension of Rings
Let R be a left and right Noetherian ring. We introduce the notion of the torsionfree dimension of finitely generated R-modules. For any n 0, we prove that R is a Gorenstein ring with self-injective dimension at most n if and only if every finitely generated left R-module and every finitely generated right R-module have torsionfree dimension at most n, if and only if every finitely generated le...
متن کاملWakamatsu Tilting Modules , U - Dominant Dimension and k - Gorenstein Modules ∗ †
Let Λ and Γ be left and right noetherian rings and ΛU a Wakamatsu tilting module with Γ = End(ΛT ). We introduce a new definition of U -dominant dimensions and show that the U -dominant dimensions of ΛU and UΓ are identical. We characterize k-Gorenstein modules in terms of homological dimensions and the property of double homological functors preserving monomorphisms. We also study a generaliza...
متن کاملAll Tilting Modules Are of Finite Type
We prove that any infinitely generated tilting module is of finite type, namely that its associated tilting class is the Ext-orthogonal of a set of modules possessing a projective resolution consisting of finitely generated projective modules.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2007
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2006.11.025